octomap 1.5.0
octomap::OcTreeStamped Class Reference
Inheritance diagram for octomap::OcTreeStamped:
Collaboration diagram for octomap::OcTreeStamped:

Data Structures

class  StaticMemberInitializer
 Static member object which ensures that this OcTree's prototype ends up in the classIDMapping only once. More...

Public Types

typedef leaf_iterator iterator
typedef NODE NodeType
 Make the templated NODE type available from the outside.

Public Member Functions

OcTreeKey adjustKeyAtDepth (const OcTreeKey &key, unsigned int depth) const
 Adjusts a 3D key from the lowest level to correspond to a higher depth (by shifting the key values)
unsigned short int adjustKeyAtDepth (unsigned short int key, unsigned int depth) const
 Adjusts a single key value from the lowest level to correspond to a higher depth (by shifting the key value)
bool bbxSet () const
iterator begin (unsigned char maxDepth=0) const
leaf_iterator begin_leafs (unsigned char maxDepth=0) const
leaf_bbx_iterator begin_leafs_bbx (const point3d &min, const point3d &max, unsigned char maxDepth=0) const
leaf_bbx_iterator begin_leafs_bbx (const OcTreeKey &min, const OcTreeKey &max, unsigned char maxDepth=0) const
tree_iterator begin_tree (unsigned char maxDepth=0) const
size_t calcNumNodes () const
 Traverses the tree to calculate the total number of nodes.
void calcNumThresholdedNodes (unsigned int &num_thresholded, unsigned int &num_other) const
virtual bool castRay (const point3d &origin, const point3d &direction, point3d &end, bool ignoreUnknownCells=false, double maxRange=-1.0) const
 Performs raycasting in 3d, similar to computeRay().
KeyBoolMap::const_iterator changedKeysBegin ()
 Iterator to traverse all keys of changed nodes.
KeyBoolMap::const_iterator changedKeysEnd ()
 Iterator to traverse all keys of changed nodes.
void clear ()
 Deletes the complete tree structure (only the root node will remain)
bool computeRay (const point3d &origin, const point3d &end, std::vector< point3d > &ray)
 Traces a ray from origin to end (excluding), returning the coordinates of all nodes traversed by the beam.
bool computeRayKeys (const point3d &origin, const point3d &end, KeyRay &ray) const
 Traces a ray from origin to end (excluding), returning an OcTreeKey of all nodes traversed by the beam.
void computeUpdate (const Pointcloud &scan, const octomap::point3d &origin, KeySet &free_cells, KeySet &occupied_cells, double maxrange)
 Helper for insertScan.
unsigned short int coordToKey (double coordinate) const
 Converts from a single coordinate into a discrete key.
OcTreeKey coordToKey (const point3d &coord) const
 Converts from a 3D coordinate into a 3D addressing key.
unsigned short int coordToKey (double coordinate, unsigned depth) const
 Converts from a single coordinate into a discrete key at a given depth.
OcTreeKey coordToKey (const point3d &coord, unsigned depth) const
 Converts from a 3D coordinate into a 3D addressing key at a given depth.
bool coordToKeyChecked (double coordinate, unsigned short int &key) const
 Converts a single coordinate into a discrete addressing key, with boundary checking.
bool coordToKeyChecked (const point3d &coord, OcTreeKey &key) const
 Converts a 3D coordinate into a 3D OcTreeKey, with boundary checking.
bool coordToKeyChecked (const point3d &coord, unsigned depth, OcTreeKey &key) const
 Converts a 3D coordinate into a 3D OcTreeKey at a certain depth, with boundary checking.
bool coordToKeyChecked (double coordinate, unsigned depth, unsigned short int &key) const
 Converts a single coordinate into a discrete addressing key, with boundary checking.
OcTreeStampedcreate () const
 virtual constructor: creates a new object of same type (Covariant return type requires an up-to-date compiler)
OcTreeBaseImpl deepCopy () const
void degradeOutdatedNodes (unsigned int time_thres)
bool deleteNode (float x, float y, float z, unsigned int depth=0)
 Delete a node (if exists) given a 3d point.
bool deleteNode (const point3d &value, unsigned int depth=0)
 Delete a node (if exists) given a 3d point.
bool deleteNode (const OcTreeKey &key, unsigned int depth=0)
 Delete a node (if exists) given an addressing key.
 DEPRECATED (inline double genCoordFromKey(const unsigned short int &key) const)
 DEPRECATED (double genCoordFromKey(const unsigned short int &key, unsigned depth) const)
 DEPRECATED (inline void genPos(const OcTreeKey &key, int depth, unsigned int &pos) const)
 generate child index (between 0 and 7) from key at given tree depth DEPRECATED
 DEPRECATED (inline bool genCoords(const OcTreeKey &key, unsigned int depth, point3d &point) const)
 DEPRECATED (void getOccupied(point3d_list &node_centers, unsigned int max_depth=0) const)
 Convenience function to return all occupied nodes in the OcTree.
 DEPRECATED (void getOccupied(std::list< OcTreeVolume > &occupied_volumes, unsigned int max_depth=0) const)
 Convenience function to return all occupied nodes in the OcTree.
 DEPRECATED (void getOccupied(std::list< OcTreeVolume > &binary_nodes, std::list< OcTreeVolume > &delta_nodes, unsigned int max_depth=0) const)
 Traverses the tree and collects all OcTreeVolumes regarded as occupied.
 DEPRECATED (void getOccupiedLeafsBBX(point3d_list &node_centers, point3d min, point3d max) const)
 returns occupied leafs within a bounding box defined by min and max.
 DEPRECATED (void getFreespace(std::list< OcTreeVolume > &free_volumes, unsigned int max_depth=0) const)
 Convenience function to return all free nodes in the OcTree.
 DEPRECATED (bool genKeyValue(double coordinate, unsigned short int &keyval) const)
 DEPRECATED (bool genKeyValueAtDepth(const unsigned short int keyval, unsigned int depth, unsigned short int &out_keyval) const )
 DEPRECATED (void getFreespace(std::list< OcTreeVolume > &binary_nodes, std::list< OcTreeVolume > &delta_nodes, unsigned int max_depth=0) const)
 Traverses the tree and collects all OcTreeVolumes regarded as free.
 DEPRECATED (bool genKey(const point3d &point, OcTreeKey &key) const )
 DEPRECATED (bool genKeyAtDepth(const OcTreeKey &key, unsigned int depth, OcTreeKey &out_key) const )
 DEPRECATED (bool genCoordFromKey(const unsigned short int &key, unsigned depth, float &coord) const )
 DEPRECATED (inline bool genCoordFromKey(const unsigned short int &key, float &coord, unsigned depth) const)
 DEPRECATED (inline bool genCoordFromKey(const unsigned short int &key, float &coord) const)
void enableChangeDetection (bool enable)
 track or ignore changes while inserting scans (default: ignore)
const iterator end () const
const leaf_iterator end_leafs () const
const leaf_bbx_iterator end_leafs_bbx () const
const tree_iterator end_tree () const
virtual void expand ()
 Expands all pruned nodes (reverse of prune())
point3d getBBXBounds () const
point3d getBBXCenter () const
point3d getBBXMax () const
point3d getBBXMin () const
unsigned int getLastUpdateTime ()
virtual void getMetricMax (double &x, double &y, double &z)
 maximum value of the bounding box of all known space in x, y, z
void getMetricMax (double &x, double &y, double &z) const
 maximum value of the bounding box of all known space in x, y, z
virtual void getMetricMin (double &x, double &y, double &z)
 minimum value of the bounding box of all known space in x, y, z
void getMetricMin (double &x, double &y, double &z) const
 minimum value of the bounding box of all known space in x, y, z
virtual void getMetricSize (double &x, double &y, double &z)
 Size of OcTree (all known space) in meters for x, y and z dimension.
double getNodeSize (unsigned depth) const
size_t getNumLeafNodes () const
 Traverses the tree to calculate the total number of leaf nodes.
double getResolution () const
NODE * getRoot () const
unsigned int getTreeDepth () const
std::string getTreeType () const
void getUnknownLeafCenters (point3d_list &node_centers, point3d pmin, point3d pmax) const
 return centers of leafs that do NOT exist (but could) in a given bounding box
bool inBBX (const point3d &p) const
bool inBBX (const OcTreeKey &key) const
virtual bool insertRay (const point3d &origin, const point3d &end, double maxrange=-1.0, bool lazy_eval=false)
 Insert one ray between origin and end into the tree.
virtual void insertScan (const Pointcloud &scan, const point3d &sensor_origin, const pose6d &frame_origin, double maxrange=-1., bool pruning=true, bool lazy_eval=false)
 Integrate a 3d scan, transform scan before tree update.
virtual void insertScan (const ScanNode &scan, double maxrange=-1., bool pruning=true, bool lazy_eval=false)
 Insert a 3d scan (given as a ScanNode) into the tree.
virtual void insertScan (const Pointcloud &scan, const octomap::point3d &sensor_origin, double maxrange=-1., bool pruning=true, bool lazy_eval=false)
 Integrate a Pointcloud (in global reference frame)
virtual void insertScanNaive (const Pointcloud &pc, const point3d &origin, double maxrange, bool pruning=true, bool lazy_eval=false)
 for testing only
virtual void integrateHit (OcTreeNodeStamped *occupancyNode) const
 integrate a "hit" measurement according to the tree's sensor model
virtual void integrateMiss (OcTreeNodeStamped *occupancyNode) const
 integrate a "miss" measurement according to the tree's sensor model
void integrateMissNoTime (OcTreeNodeStamped *node) const
point3d keyToCoord (const OcTreeKey &key, unsigned depth) const
 converts from an addressing key at a given depth into a coordinate corresponding to the key's center
double keyToCoord (unsigned short int key, unsigned depth) const
 converts from a discrete key at a given depth into a coordinate corresponding to the key's center
double keyToCoord (unsigned short int key) const
 converts from a discrete key at the lowest tree level into a coordinate corresponding to the key's center
point3d keyToCoord (const OcTreeKey &key) const
 converts from an addressing key at the lowest tree level into a coordinate corresponding to the key's center
size_t memoryFullGrid ()
virtual size_t memoryUsage () const
virtual size_t memoryUsageNode () const
virtual void nodeToMaxLikelihood (OcTreeNodeStamped *occupancyNode) const
 converts the node to the maximum likelihood value according to the tree's parameter for "occupancy"
virtual void nodeToMaxLikelihood (OcTreeNodeStamped &occupancyNode) const
 converts the node to the maximum likelihood value according to the tree's parameter for "occupancy"
 OcTreeStamped (double resolution)
 Default constructor, sets resolution of leafs.
bool operator== (const OcTreeBaseImpl< NODE, INTERFACE > &rhs) const
virtual void prune ()
 Lossless compression of OcTree: merge children to parent when there are eight children with identical values.
std::istream & readBinaryData (std::istream &s)
 Reads only the data (=tree structure) from the input stream.
std::istream & readBinaryNode (std::istream &s, OcTreeNodeStamped *node) const
 Read node from binary stream (max-likelihood value), recursively continue with all children.
std::istream & readData (std::istream &s)
 Read all nodes from the input stream (without file header), for this the tree needs to be already created.
void resetChangeDetection ()
 Reset the set of changed keys. Call this after you obtained all changed nodes.
NODE * search (const OcTreeKey &key, unsigned int depth=0) const
 Search a node at specified depth given an addressing key (depth=0: search full tree depth)
NODE * search (float x, float y, float z, unsigned int depth=0) const
 Search node at specified depth given a 3d point (depth=0: search full tree depth)
NODE * search (const point3d &value, unsigned int depth=0) const
 Search node at specified depth given a 3d point (depth=0: search full tree depth)
void setBBXMax (point3d &max)
 sets the maximum for a query bounding box to use
void setBBXMin (point3d &min)
 sets the minimum for a query bounding box to use
void setResolution (double r)
 Change the resolution of the octree, scaling all voxels.
virtual size_t size () const
virtual void toMaxLikelihood ()
 Creates the maximum likelihood map by calling toMaxLikelihood on all tree nodes, setting their occupancy to the corresponding occupancy thresholds.
void updateInnerOccupancy ()
 Updates the occupancy of all inner nodes to reflect their children's occupancy.
virtual OcTreeNodeStampedupdateNode (const point3d &value, bool occupied, bool lazy_eval=false)
 Integrate occupancy measurement.
virtual OcTreeNodeStampedupdateNode (const OcTreeKey &key, float log_odds_update, bool lazy_eval=false)
 Manipulate log_odds value of voxel directly.
virtual OcTreeNodeStampedupdateNode (const OcTreeKey &key, bool occupied, bool lazy_eval=false)
 Integrate occupancy measurement.
virtual OcTreeNodeStampedupdateNode (const point3d &value, float log_odds_update, bool lazy_eval=false)
 Manipulate log_odds value of voxel directly.
virtual void updateNodeLogOdds (OcTreeNodeStamped *node, const float &update) const
void useBBXLimit (bool enable)
 use or ignore BBX limit (default: ignore)
double volume ()
std::ostream & writeBinaryData (std::ostream &s) const
 Writes the data of the tree (without header) to the stream, recursively calling writeBinaryNode (starting with root)
std::ostream & writeBinaryNode (std::ostream &s, const OcTreeNodeStamped *node) const
 Write node to binary stream (max-likelihood value), recursively continue with all children.
std::ostream & writeData (std::ostream &s) const
 Write complete state of tree to stream (without file header) unmodified.

Protected Member Functions

void calcMinMax ()
 recalculates min and max in x, y, z. Does nothing when tree size didn't change.
void calcNumNodesRecurs (NODE *node, size_t &num_nodes) const
void calcNumThresholdedNodesRecurs (OcTreeNodeStamped *node, unsigned int &num_thresholded, unsigned int &num_other) const
bool deleteNodeRecurs (NODE *node, unsigned int depth, unsigned int max_depth, const OcTreeKey &key)
 recursive call of deleteNode()
void expandRecurs (NODE *node, unsigned int depth, unsigned int max_depth)
 recursive call of expand()
size_t getNumLeafNodesRecurs (const NODE *parent) const
void getOccupiedLeafsBBXRecurs (point3d_list &node_centers, unsigned int max_depth, OcTreeNodeStamped *node, unsigned int depth, const OcTreeKey &parent_key, const OcTreeKey &min, const OcTreeKey &max) const
bool integrateMissOnRay (const point3d &origin, const point3d &end, bool lazy_eval=false)
 Traces a ray from origin to end and updates all voxels on the way as free.
void pruneRecurs (NODE *node, unsigned int depth, unsigned int max_depth, unsigned int &num_pruned)
 recursive call of prune()
void toMaxLikelihoodRecurs (OcTreeNodeStamped *node, unsigned int depth, unsigned int max_depth)
void updateInnerOccupancyRecurs (OcTreeNodeStamped *node, unsigned int depth)
OcTreeNodeStampedupdateNodeRecurs (OcTreeNodeStamped *node, bool node_just_created, const OcTreeKey &key, unsigned int depth, const float &log_odds_update, bool lazy_eval=false)

Protected Attributes

point3d bbx_max
OcTreeKey bbx_max_key
point3d bbx_min
OcTreeKey bbx_min_key
KeyBoolMap changed_keys
 Set of leaf keys (lowest level) which changed since last resetChangeDetection.
KeyRay keyray
const leaf_bbx_iterator leaf_iterator_bbx_end
const leaf_iterator leaf_iterator_end
double max_value [3]
 max in x, y, z
double min_value [3]
 min in x, y, z
double resolution
 in meters
double resolution_factor
 = 1. / resolution
NODE * root
bool size_changed
 flag to denote whether the octree extent changed (for lazy min/max eval)
std::vector< double > sizeLookupTable
 contains the size of a voxel at level i (0: root node). tree_depth+1 levels (incl. 0)
point3d tree_center
const unsigned int tree_depth
 Maximum tree depth is fixed to 16 currently.
const tree_iterator tree_iterator_end
const unsigned int tree_max_val
size_t tree_size
 number of nodes in tree
bool use_bbx_limit
 use bounding box for queries (needs to be set)?
bool use_change_detection

Static Protected Attributes

static StaticMemberInitializer ocTreeStampedMemberInit
 to ensure static initialization (only once)

Member Typedef Documentation

template<class NODE, class INTERFACE>
typedef leaf_iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::iterator [inherited]
template<class NODE, class INTERFACE>
typedef NODE octomap::OcTreeBaseImpl< NODE, INTERFACE >::NodeType [inherited]

Make the templated NODE type available from the outside.


Constructor & Destructor Documentation

octomap::OcTreeStamped::OcTreeStamped ( double  resolution) [inline]

Default constructor, sets resolution of leafs.

Referenced by create(), and octomap::OcTreeStamped::StaticMemberInitializer::StaticMemberInitializer().


Member Function Documentation

template<class NODE, class INTERFACE>
OcTreeKey octomap::OcTreeBaseImpl< NODE, INTERFACE >::adjustKeyAtDepth ( const OcTreeKey key,
unsigned int  depth 
) const [inline, inherited]

Adjusts a 3D key from the lowest level to correspond to a higher depth (by shifting the key values)

Parameters:
keyInput key, at the lowest tree level
depthTarget depth level for the new key
Returns:
Key for the new depth level

Referenced by octomap::OcTreeBaseImpl< CountingOcTreeNode, AbstractOcTree >::adjustKeyAtDepth().

template<class NODE , class I >
unsigned short int octomap::OcTreeBaseImpl< NODE, I >::adjustKeyAtDepth ( unsigned short int  key,
unsigned int  depth 
) const [inherited]

Adjusts a single key value from the lowest level to correspond to a higher depth (by shifting the key value)

Parameters:
keyInput key, at the lowest tree level
depthTarget depth level for the new key
Returns:
Key for the new depth level
template<class NODE, class INTERFACE>
iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::begin ( unsigned char  maxDepth = 0) const [inline, inherited]
Returns:
beginning of the tree as leaf iterator

Referenced by main().

template<class NODE, class INTERFACE>
leaf_iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::begin_leafs ( unsigned char  maxDepth = 0) const [inline, inherited]
Returns:
beginning of the tree as leaf iterator

Referenced by degradeOutdatedNodes(), and main().

template<class NODE, class INTERFACE>
leaf_bbx_iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::begin_leafs_bbx ( const OcTreeKey min,
const OcTreeKey max,
unsigned char  maxDepth = 0 
) const [inline, inherited]
Returns:
beginning of the tree as leaf iterator in a bounding box
template<class NODE, class INTERFACE>
leaf_bbx_iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::begin_leafs_bbx ( const point3d min,
const point3d max,
unsigned char  maxDepth = 0 
) const [inline, inherited]
Returns:
beginning of the tree as leaf iterator in a bounding box
template<class NODE, class INTERFACE>
tree_iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::begin_tree ( unsigned char  maxDepth = 0) const [inline, inherited]
Returns:
beginning of the tree as iterator to all nodes (incl. inner)

Referenced by octomap::OcTreeBaseImpl< NODE, INTERFACE >::operator==(), printChanges(), and octomap::ColorOcTree::writeColorHistogram().

template<class NODE , class I >
void octomap::OcTreeBaseImpl< NODE, I >::calcMinMax ( ) [protected, inherited]

recalculates min and max in x, y, z. Does nothing when tree size didn't change.

template<class NODE , class I >
size_t octomap::OcTreeBaseImpl< NODE, I >::calcNumNodes ( ) const [inherited]

Traverses the tree to calculate the total number of nodes.

Referenced by main(), and octomap::OccupancyOcTreeBase< NODE >::readBinaryData().

template<class NODE, class I >
void octomap::OcTreeBaseImpl< NODE, I >::calcNumNodesRecurs ( NODE *  node,
size_t &  num_nodes 
) const [protected, inherited]
void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::calcNumThresholdedNodes ( unsigned int &  num_thresholded,
unsigned int &  num_other 
) const [inherited]
void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::calcNumThresholdedNodesRecurs ( OcTreeNodeStamped node,
unsigned int &  num_thresholded,
unsigned int &  num_other 
) const [protected, inherited]
virtual bool octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::castRay ( const point3d origin,
const point3d direction,
point3d end,
bool  ignoreUnknownCells = false,
double  maxRange = -1.0 
) const [virtual, inherited]

Performs raycasting in 3d, similar to computeRay().

A ray is cast from origin with a given direction, the first occupied cell is returned (as center coordinate). If the starting coordinate is already occupied in the tree, this coordinate will be returned as a hit.

Parameters:
originstarting coordinate of ray
directionA vector pointing in the direction of the raycast. Does not need to be normalized.
endreturns the center of the cell that was hit by the ray, if successful
ignoreUnknownCellswhether unknown cells are ignored. If false (default), the raycast aborts when an unkown cell is hit.
maxRangeMaximum range after which the raycast is aborted (<= 0: no limit, default)
Returns:
whether or not an occupied cell was hit
KeyBoolMap::const_iterator octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::changedKeysBegin ( ) [inline, inherited]

Iterator to traverse all keys of changed nodes.

you need to enableChangeDetection() first. Here, an OcTreeKey always refers to a node at the lowest tree level (its size is the minimum tree resolution)

References octomap::OccupancyOcTreeBase< NODE >::changed_keys.

KeyBoolMap::const_iterator octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::changedKeysEnd ( ) [inline, inherited]

Iterator to traverse all keys of changed nodes.

References octomap::OccupancyOcTreeBase< NODE >::changed_keys.

template<class NODE , class I >
void octomap::OcTreeBaseImpl< NODE, I >::clear ( ) [inherited]

Deletes the complete tree structure (only the root node will remain)

template<class NODE , class I >
bool octomap::OcTreeBaseImpl< NODE, I >::computeRay ( const point3d origin,
const point3d end,
std::vector< point3d > &  ray 
) [inherited]

Traces a ray from origin to end (excluding), returning the coordinates of all nodes traversed by the beam.

You still need to check if a node at that coordinate exists (e.g. with search()).

Note:
: use the faster computeRayKeys method if possible.
Parameters:
originstart coordinate of ray
endend coordinate of ray
rayKeyRay structure that holds the keys of all nodes traversed by the ray, excluding "end"
Returns:
Success of operation. Returning false usually means that one of the coordinates is out of the OcTree's range
template<class NODE , class I >
bool octomap::OcTreeBaseImpl< NODE, I >::computeRayKeys ( const point3d origin,
const point3d end,
KeyRay ray 
) const [inherited]

Traces a ray from origin to end (excluding), returning an OcTreeKey of all nodes traversed by the beam.

You still need to check if a node at that coordinate exists (e.g. with search()).

Parameters:
originstart coordinate of ray
endend coordinate of ray
rayKeyRay structure that holds the keys of all nodes traversed by the ray, excluding "end"
Returns:
Success of operation. Returning false usually means that one of the coordinates is out of the OcTree's range

Reimplemented in octomap::OcTreeBaseSE< NODE >.

References octomap::KeyRay::addKey(), octomath::Vector3::norm(), OCTOMAP_WARNING_STR, octomap::KeyRay::reset(), octomap::KeyRay::size(), and octomap::KeyRay::sizeMax().

void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::computeUpdate ( const Pointcloud scan,
const octomap::point3d origin,
KeySet free_cells,
KeySet occupied_cells,
double  maxrange 
) [inherited]

Helper for insertScan.

Computes all octree nodes affected by the point cloud integration at once. Here, occupied nodes have a preference over free ones.

Parameters:
scanpoint cloud measurement to be integrated
originorigin of the sensor for ray casting
free_cellskeys of nodes to be cleared
occupied_cellskeys of nodes to be marked occupied
maxrangemaximum range for raycasting (-1: unlimited)
template<class NODE, class INTERFACE>
OcTreeKey octomap::OcTreeBaseImpl< NODE, INTERFACE >::coordToKey ( const point3d coord,
unsigned  depth 
) const [inline, inherited]

Converts from a 3D coordinate into a 3D addressing key at a given depth.

template<class NODE, class INTERFACE>
unsigned short int octomap::OcTreeBaseImpl< NODE, INTERFACE >::coordToKey ( double  coordinate) const [inline, inherited]

Converts from a single coordinate into a discrete key.

Referenced by octomap::OcTreeBaseImpl< CountingOcTreeNode, AbstractOcTree >::coordToKey().

template<class NODE , class I >
unsigned short int octomap::OcTreeBaseImpl< NODE, I >::coordToKey ( double  coordinate,
unsigned  depth 
) const [inline, inherited]

Converts from a single coordinate into a discrete key at a given depth.

template<class NODE, class INTERFACE>
OcTreeKey octomap::OcTreeBaseImpl< NODE, INTERFACE >::coordToKey ( const point3d coord) const [inline, inherited]

Converts from a 3D coordinate into a 3D addressing key.

template<class NODE , class I >
bool octomap::OcTreeBaseImpl< NODE, I >::coordToKeyChecked ( const point3d coord,
OcTreeKey key 
) const [inherited]

Converts a 3D coordinate into a 3D OcTreeKey, with boundary checking.

Parameters:
coord3d coordinate of a point
keyvalues that will be computed, an array of fixed size 3.
Returns:
true if point is within the octree (valid), false otherwise

Referenced by octomap::ColorOcTree::averageNodeColor(), octomap::OcTreeBaseImpl< CountingOcTreeNode, AbstractOcTree >::DEPRECATED(), octomap::ColorOcTree::integrateNodeColor(), main(), octomap::ColorOcTree::setNodeColor(), and octomap::CountingOcTree::updateNode().

template<class NODE , class I >
bool octomap::OcTreeBaseImpl< NODE, I >::coordToKeyChecked ( const point3d coord,
unsigned  depth,
OcTreeKey key 
) const [inherited]

Converts a 3D coordinate into a 3D OcTreeKey at a certain depth, with boundary checking.

Parameters:
coord3d coordinate of a point
depthlevel of the key from the top
keyvalues that will be computed, an array of fixed size 3.
Returns:
true if point is within the octree (valid), false otherwise
template<class NODE , class I >
bool octomap::OcTreeBaseImpl< NODE, I >::coordToKeyChecked ( double  coordinate,
unsigned short int &  key 
) const [inherited]

Converts a single coordinate into a discrete addressing key, with boundary checking.

Parameters:
coordinate3d coordinate of a point
keydiscrete 16 bit adressing key, result
Returns:
true if coordinate is within the octree bounds (valid), false otherwise
template<class NODE , class I >
bool octomap::OcTreeBaseImpl< NODE, I >::coordToKeyChecked ( double  coordinate,
unsigned  depth,
unsigned short int &  key 
) const [inherited]

Converts a single coordinate into a discrete addressing key, with boundary checking.

Parameters:
coordinate3d coordinate of a point
depthlevel of the key from the top
keydiscrete 16 bit adressing key, result
Returns:
true if coordinate is within the octree bounds (valid), false otherwise
OcTreeStamped* octomap::OcTreeStamped::create ( ) const [inline]

virtual constructor: creates a new object of same type (Covariant return type requires an up-to-date compiler)

References OcTreeStamped(), and octomap::OcTreeBaseImpl< NODE, INTERFACE >::resolution.

template<class NODE, class INTERFACE>
OcTreeBaseImpl octomap::OcTreeBaseImpl< NODE, INTERFACE >::deepCopy ( ) const [inherited]
template<class NODE , class I >
bool octomap::OcTreeBaseImpl< NODE, I >::deleteNode ( float  x,
float  y,
float  z,
unsigned int  depth = 0 
) [inherited]

Delete a node (if exists) given a 3d point.

Will always delete at the lowest level unless depth !=0, and expand pruned inner nodes as needed. Pruned nodes at level "depth" will directly be deleted as a whole.

template<class NODE , class I >
bool octomap::OcTreeBaseImpl< NODE, I >::deleteNode ( const OcTreeKey key,
unsigned int  depth = 0 
) [inherited]

Delete a node (if exists) given an addressing key.

Will always delete at the lowest level unless depth !=0, and expand pruned inner nodes as needed. Pruned nodes at level "depth" will directly be deleted as a whole.

template<class NODE , class I >
bool octomap::OcTreeBaseImpl< NODE, I >::deleteNode ( const point3d value,
unsigned int  depth = 0 
) [inherited]

Delete a node (if exists) given a 3d point.

Will always delete at the lowest level unless depth !=0, and expand pruned inner nodes as needed. Pruned nodes at level "depth" will directly be deleted as a whole.

References OCTOMAP_ERROR_STR.

template<class NODE, class I >
bool octomap::OcTreeBaseImpl< NODE, I >::deleteNodeRecurs ( NODE *  node,
unsigned int  depth,
unsigned int  max_depth,
const OcTreeKey key 
) [protected, inherited]

recursive call of deleteNode()

References octomap::computeChildIdx().

template<class NODE, class INTERFACE>
octomap::OcTreeBaseImpl< NODE, INTERFACE >::DEPRECATED ( inline double genCoordFromKey(const unsigned short int &key)  const) [inline, inherited]
template<class NODE, class INTERFACE>
octomap::OcTreeBaseImpl< NODE, INTERFACE >::DEPRECATED ( inline bool genCoords(const OcTreeKey &key, unsigned int depth, point3d &point)  const) [inline, inherited]

Will always return true, there is no more boundary check here

template<class NODE, class INTERFACE>
octomap::OcTreeBaseImpl< NODE, INTERFACE >::DEPRECATED ( inline void genPos(const OcTreeKey &key, int depth, unsigned int &pos)  const) [inline, inherited]

generate child index (between 0 and 7) from key at given tree depth DEPRECATED

octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::DEPRECATED ( void getOccupied(point3d_list &node_centers, unsigned int max_depth=0)  const) [inherited]

Convenience function to return all occupied nodes in the OcTree.

Note:
Deprecated, will be removed in the future. Direcly access the nodes with iterators instead!
Parameters:
node_centerslist of occpupied nodes (as point3d)
max_depthDepth limit of query. 0 (default): no depth limit
octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::DEPRECATED ( void getOccupied(std::list< OcTreeVolume > &occupied_volumes, unsigned int max_depth=0)  const) [inherited]

Convenience function to return all occupied nodes in the OcTree.

Note:
Deprecated, will be removed in the future. Direcly access the nodes with iterators instead! *
Parameters:
occupied_volumeslist of occpupied nodes (as point3d and size of the volume)
max_depthDepth limit of query. 0 (default): no depth limit
octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::DEPRECATED ( void getOccupiedLeafsBBX(point3d_list &node_centers, point3d min, point3d max)  const) [inherited]

returns occupied leafs within a bounding box defined by min and max.

Note:
Deprecated, will be removed in the future. Direcly access the nodes with iterators instead!
octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::DEPRECATED ( void getFreespace(std::list< OcTreeVolume > &free_volumes, unsigned int max_depth=0)  const) [inherited]

Convenience function to return all free nodes in the OcTree.

Note:
Deprecated, will be removed in the future. Direcly access the nodes with iterators instead!
Parameters:
free_volumeslist of free nodes (as point3d and size of the volume)
max_depthDepth limit of query. 0 (default): no depth limit
octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::DEPRECATED ( void getOccupied(std::list< OcTreeVolume > &binary_nodes, std::list< OcTreeVolume > &delta_nodes, unsigned int max_depth=0)  const) [inherited]

Traverses the tree and collects all OcTreeVolumes regarded as occupied.

Inner nodes with both occupied and free children are regarded as occupied. This should be for internal use only, use getOccupied(occupied_volumes) instead.

Note:
Deprecated, will be removed in the future. Direcly access the nodes with iterators instead! *
Parameters:
binary_nodeslist of binary OcTreeVolumes which are occupied
delta_nodeslist of delta OcTreeVolumes which are occupied
max_depthDepth limit of query. 0 (default): no depth limit
octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::DEPRECATED ( void getFreespace(std::list< OcTreeVolume > &binary_nodes, std::list< OcTreeVolume > &delta_nodes, unsigned int max_depth=0)  const) [inherited]

Traverses the tree and collects all OcTreeVolumes regarded as free.

Inner nodes with both occupied and free children are regarded as occupied.

Note:
Deprecated, will be removed in the future. Direcly access the nodes with iterators instead!
Parameters:
binary_nodeslist of binary OcTreeVolumes which are free
delta_nodeslist of delta OcTreeVolumes which are free
max_depthDepth limit of query. 0 (default): no depth limit
template<class NODE, class INTERFACE>
octomap::OcTreeBaseImpl< NODE, INTERFACE >::DEPRECATED ( bool genKey(const point3d &point, OcTreeKey &key)  const) [inline, inherited]
template<class NODE, class INTERFACE>
octomap::OcTreeBaseImpl< NODE, INTERFACE >::DEPRECATED ( bool genKeyValue(double coordinate, unsigned short int &keyval)  const) [inline, inherited]
template<class NODE, class INTERFACE>
octomap::OcTreeBaseImpl< NODE, INTERFACE >::DEPRECATED ( bool genKeyAtDepth(const OcTreeKey &key, unsigned int depth, OcTreeKey &out_key)  const) [inherited]
template<class NODE, class INTERFACE>
octomap::OcTreeBaseImpl< NODE, INTERFACE >::DEPRECATED ( bool genKeyValueAtDepth(const unsigned short int keyval, unsigned int depth, unsigned short int &out_keyval)  const) [inherited]
template<class NODE, class INTERFACE>
octomap::OcTreeBaseImpl< NODE, INTERFACE >::DEPRECATED ( inline bool genCoordFromKey(const unsigned short int &key, float &coord, unsigned depth)  const) [inline, inherited]
template<class NODE, class INTERFACE>
octomap::OcTreeBaseImpl< NODE, INTERFACE >::DEPRECATED ( bool genCoordFromKey(const unsigned short int &key, unsigned depth, float &coord)  const) [inline, inherited]
template<class NODE, class INTERFACE>
octomap::OcTreeBaseImpl< NODE, INTERFACE >::DEPRECATED ( inline bool genCoordFromKey(const unsigned short int &key, float &coord)  const) [inline, inherited]
template<class NODE, class INTERFACE>
octomap::OcTreeBaseImpl< NODE, INTERFACE >::DEPRECATED ( double genCoordFromKey(const unsigned short int &key, unsigned depth)  const) [inline, inherited]
void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::enableChangeDetection ( bool  enable) [inline, inherited]

track or ignore changes while inserting scans (default: ignore)

References octomap::OccupancyOcTreeBase< NODE >::use_change_detection.

template<class NODE, class INTERFACE>
const iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::end ( ) const [inline, inherited]
Returns:
end of the tree as leaf iterator

Referenced by degradeOutdatedNodes(), main(), and octomap::ColorOcTree::writeColorHistogram().

template<class NODE, class INTERFACE>
const leaf_iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::end_leafs ( ) const [inline, inherited]
Returns:
end of the tree as leaf iterator

Referenced by degradeOutdatedNodes(), and main().

template<class NODE, class INTERFACE>
const leaf_bbx_iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::end_leafs_bbx ( ) const [inline, inherited]
Returns:
end of the tree as leaf iterator in a bounding box
template<class NODE, class INTERFACE>
const tree_iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::end_tree ( ) const [inline, inherited]
Returns:
end of the tree as iterator to all nodes (incl. inner)

Referenced by octomap::OcTreeBaseImpl< NODE, INTERFACE >::operator==(), printChanges(), and octomap::ColorOcTree::writeColorHistogram().

template<class NODE , class I >
void octomap::OcTreeBaseImpl< NODE, I >::expand ( ) [virtual, inherited]

Expands all pruned nodes (reverse of prune())

Note:
This is an expensive operation, especially when the tree is nearly empty!

Referenced by main(), and printChanges().

template<class NODE, class I >
void octomap::OcTreeBaseImpl< NODE, I >::expandRecurs ( NODE *  node,
unsigned int  depth,
unsigned int  max_depth 
) [protected, inherited]

recursive call of expand()

point3d octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::getBBXBounds ( ) const [inherited]
point3d octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::getBBXCenter ( ) const [inherited]
point3d octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::getBBXMax ( ) const [inline, inherited]
Returns:
the currently set maximum for bounding box queries, if set

References octomap::OccupancyOcTreeBase< NODE >::bbx_max.

point3d octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::getBBXMin ( ) const [inline, inherited]
Returns:
the currently set minimum for bounding box queries, if set

References octomap::OccupancyOcTreeBase< NODE >::bbx_min.

unsigned int octomap::OcTreeStamped::getLastUpdateTime ( )
Returns:
timestamp of last update

References octomap::OcTreeBaseImpl< NODE, INTERFACE >::root.

Referenced by main().

template<class NODE , class I >
void octomap::OcTreeBaseImpl< NODE, I >::getMetricMax ( double &  x,
double &  y,
double &  z 
) const [inherited]

maximum value of the bounding box of all known space in x, y, z

template<class NODE , class I >
void octomap::OcTreeBaseImpl< NODE, I >::getMetricMax ( double &  x,
double &  y,
double &  z 
) [virtual, inherited]

maximum value of the bounding box of all known space in x, y, z

template<class NODE , class I >
void octomap::OcTreeBaseImpl< NODE, I >::getMetricMin ( double &  x,
double &  y,
double &  z 
) [virtual, inherited]

minimum value of the bounding box of all known space in x, y, z

template<class NODE , class I >
void octomap::OcTreeBaseImpl< NODE, I >::getMetricMin ( double &  x,
double &  y,
double &  z 
) const [inherited]

minimum value of the bounding box of all known space in x, y, z

template<class NODE , class I >
void octomap::OcTreeBaseImpl< NODE, I >::getMetricSize ( double &  x,
double &  y,
double &  z 
) [virtual, inherited]

Size of OcTree (all known space) in meters for x, y and z dimension.

Referenced by main().

template<class NODE, class INTERFACE>
double octomap::OcTreeBaseImpl< NODE, INTERFACE >::getNodeSize ( unsigned  depth) const [inline, inherited]
template<class NODE , class I >
size_t octomap::OcTreeBaseImpl< NODE, I >::getNumLeafNodes ( ) const [inherited]

Traverses the tree to calculate the total number of leaf nodes.

Referenced by main().

template<class NODE, class I >
size_t octomap::OcTreeBaseImpl< NODE, I >::getNumLeafNodesRecurs ( const NODE *  parent) const [protected, inherited]
void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::getOccupiedLeafsBBXRecurs ( point3d_list node_centers,
unsigned int  max_depth,
OcTreeNodeStamped node,
unsigned int  depth,
const OcTreeKey parent_key,
const OcTreeKey min,
const OcTreeKey max 
) const [protected, inherited]
template<class NODE, class INTERFACE>
double octomap::OcTreeBaseImpl< NODE, INTERFACE >::getResolution ( ) const [inline, inherited]

Referenced by getLeafNodesRecurs(), and main().

template<class NODE, class INTERFACE>
NODE* octomap::OcTreeBaseImpl< NODE, INTERFACE >::getRoot ( ) const [inline, inherited]
Returns:
Pointer to the root node of the tree. This pointer should not be modified or deleted externally, the OcTree manages its memory itself.

Referenced by main().

template<class NODE, class INTERFACE>
unsigned int octomap::OcTreeBaseImpl< NODE, INTERFACE >::getTreeDepth ( ) const [inline, inherited]
std::string octomap::OcTreeStamped::getTreeType ( ) const [inline]
template<class NODE , class I >
void octomap::OcTreeBaseImpl< NODE, I >::getUnknownLeafCenters ( point3d_list node_centers,
point3d  pmin,
point3d  pmax 
) const [inherited]

return centers of leafs that do NOT exist (but could) in a given bounding box

References octomath::Vector3::x(), octomath::Vector3::y(), and octomath::Vector3::z().

bool octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::inBBX ( const OcTreeKey key) const [inherited]
Returns:
true if key is in the currently set bounding box
bool octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::inBBX ( const point3d p) const [inherited]
Returns:
true if point is in the currently set bounding box
virtual bool octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::insertRay ( const point3d origin,
const point3d end,
double  maxrange = -1.0,
bool  lazy_eval = false 
) [virtual, inherited]

Insert one ray between origin and end into the tree.

integrateMissOnRay() is called for the ray, the end point is updated as occupied.

Parameters:
originorigin of sensor in global coordinates
endendpoint of measurement in global coordinates
maxrangemaximum range after which the raycast should be aborted
lazy_evalwhether update of inner nodes is omitted after the update (default: false). This speeds up the insertion, but you need to call updateInnerOccupancy() when done.
Returns:
success of operation
virtual void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::insertScan ( const Pointcloud scan,
const point3d sensor_origin,
const pose6d frame_origin,
double  maxrange = -1.,
bool  pruning = true,
bool  lazy_eval = false 
) [virtual, inherited]

Integrate a 3d scan, transform scan before tree update.

Parameters:
scanPointcloud (measurement endpoints) relative to frame origin
sensor_originorigin of sensor relative to frame origin
frame_originorigin of reference frame, determines transform to be applied to cloud and sensor origin
maxrangemaximum range for how long individual beams are inserted (default -1: complete beam)
pruningwhether the tree is (losslessly) pruned after insertion (default: true)
lazy_evalwhether update of inner nodes is omitted after the update (default: false). This speeds up the insertion, but you need to call updateInnerOccupancy() when done.
virtual void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::insertScan ( const ScanNode scan,
double  maxrange = -1.,
bool  pruning = true,
bool  lazy_eval = false 
) [virtual, inherited]

Insert a 3d scan (given as a ScanNode) into the tree.

Parameters:
scanScanNode contains Pointcloud data and frame/sensor origin
maxrangemaximum range for how long individual beams are inserted (default -1: complete beam)
pruningwhether the tree is (losslessly) pruned after insertion (default: true)
lazy_evalwhether the tree is left 'dirty' after the update (default: false). This speeds up the insertion by not updating inner nodes, but you need to call updateInnerOccupancy() when done.
virtual void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::insertScan ( const Pointcloud scan,
const octomap::point3d sensor_origin,
double  maxrange = -1.,
bool  pruning = true,
bool  lazy_eval = false 
) [virtual, inherited]

Integrate a Pointcloud (in global reference frame)

Parameters:
scanPointcloud (measurement endpoints), in global reference frame
sensor_originmeasurement origin in global reference frame
maxrangemaximum range for how long individual beams are inserted (default -1: complete beam)
pruningwhether the tree is (losslessly) pruned after insertion (default: true)
lazy_evalwhether update of inner nodes is omitted after the update (default: false). This speeds up the insertion, but you need to call updateInnerOccupancy() when done.
virtual void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::insertScanNaive ( const Pointcloud pc,
const point3d origin,
double  maxrange,
bool  pruning = true,
bool  lazy_eval = false 
) [virtual, inherited]

for testing only

virtual void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::integrateHit ( OcTreeNodeStamped occupancyNode) const [virtual, inherited]

integrate a "hit" measurement according to the tree's sensor model

virtual void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::integrateMiss ( OcTreeNodeStamped occupancyNode) const [virtual, inherited]

integrate a "miss" measurement according to the tree's sensor model

void octomap::OcTreeStamped::integrateMissNoTime ( OcTreeNodeStamped node) const

References updateNodeLogOdds().

Referenced by degradeOutdatedNodes(), and main().

bool octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::integrateMissOnRay ( const point3d origin,
const point3d end,
bool  lazy_eval = false 
) [inline, protected, inherited]

Traces a ray from origin to end and updates all voxels on the way as free.

The volume containing "end" is not updated.

template<class NODE, class INTERFACE>
double octomap::OcTreeBaseImpl< NODE, INTERFACE >::keyToCoord ( unsigned short int  key) const [inline, inherited]

converts from a discrete key at the lowest tree level into a coordinate corresponding to the key's center

template<class NODE , class I >
double octomap::OcTreeBaseImpl< NODE, I >::keyToCoord ( unsigned short int  key,
unsigned  depth 
) const [inherited]
template<class NODE, class INTERFACE>
point3d octomap::OcTreeBaseImpl< NODE, INTERFACE >::keyToCoord ( const OcTreeKey key) const [inline, inherited]

converts from an addressing key at the lowest tree level into a coordinate corresponding to the key's center

template<class NODE, class INTERFACE>
point3d octomap::OcTreeBaseImpl< NODE, INTERFACE >::keyToCoord ( const OcTreeKey key,
unsigned  depth 
) const [inline, inherited]

converts from an addressing key at a given depth into a coordinate corresponding to the key's center

template<class NODE , class I >
size_t octomap::OcTreeBaseImpl< NODE, I >::memoryFullGrid ( ) [inherited]
Returns:
Memory usage of a full grid of the same size as the OcTree in bytes (for comparison)

Referenced by main().

template<class NODE , class I >
size_t octomap::OcTreeBaseImpl< NODE, I >::memoryUsage ( ) const [virtual, inherited]
Returns:
Memory usage of the complete octree in bytes (may vary between architectures)

Referenced by main().

template<class NODE, class INTERFACE>
virtual size_t octomap::OcTreeBaseImpl< NODE, INTERFACE >::memoryUsageNode ( ) const [inline, virtual, inherited]
Returns:
Memory usage of the a single octree node
virtual void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::nodeToMaxLikelihood ( OcTreeNodeStamped occupancyNode) const [virtual, inherited]

converts the node to the maximum likelihood value according to the tree's parameter for "occupancy"

virtual void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::nodeToMaxLikelihood ( OcTreeNodeStamped occupancyNode) const [virtual, inherited]

converts the node to the maximum likelihood value according to the tree's parameter for "occupancy"

template<class NODE , class I >
void octomap::OcTreeBaseImpl< NODE, I >::prune ( ) [virtual, inherited]

Lossless compression of OcTree: merge children to parent when there are eight children with identical values.

Referenced by main(), and printChanges().

template<class NODE, class I >
void octomap::OcTreeBaseImpl< NODE, I >::pruneRecurs ( NODE *  node,
unsigned int  depth,
unsigned int  max_depth,
unsigned int &  num_pruned 
) [protected, inherited]

recursive call of prune()

std::istream& octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::readBinaryData ( std::istream &  s) [inherited]

Reads only the data (=tree structure) from the input stream.

The tree needs to be constructed with the proper header information beforehand, see readBinary().

std::istream& octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::readBinaryNode ( std::istream &  s,
OcTreeNodeStamped node 
) const [inherited]

Read node from binary stream (max-likelihood value), recursively continue with all children.

This will set the log_odds_occupancy value of all leaves to either free or occupied.

Parameters:
s
Returns:
template<class NODE , class I >
std::istream & octomap::OcTreeBaseImpl< NODE, I >::readData ( std::istream &  s) [inherited]

Read all nodes from the input stream (without file header), for this the tree needs to be already created.

For general file IO, you should probably use AbstractOcTree::read() instead.

References OCTOMAP_ERROR_STR, and OCTOMAP_WARNING_STR.

Referenced by main().

void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::resetChangeDetection ( ) [inline, inherited]

Reset the set of changed keys. Call this after you obtained all changed nodes.

References octomap::OccupancyOcTreeBase< NODE >::changed_keys.

template<class NODE , class I >
NODE * octomap::OcTreeBaseImpl< NODE, I >::search ( const OcTreeKey key,
unsigned int  depth = 0 
) const [inherited]

Search a node at specified depth given an addressing key (depth=0: search full tree depth)

Returns:
pointer to node if found, NULL otherwise

References octomap::computeChildIdx().

template<class NODE , class I >
NODE * octomap::OcTreeBaseImpl< NODE, I >::search ( float  x,
float  y,
float  z,
unsigned int  depth = 0 
) const [inherited]

Search node at specified depth given a 3d point (depth=0: search full tree depth)

Returns:
pointer to node if found, NULL otherwise

Referenced by octomap::ColorOcTree::averageNodeColor(), octomap::ColorOcTree::integrateNodeColor(), main(), printChanges(), and octomap::ColorOcTree::setNodeColor().

template<class NODE , class I >
NODE * octomap::OcTreeBaseImpl< NODE, I >::search ( const point3d value,
unsigned int  depth = 0 
) const [inherited]

Search node at specified depth given a 3d point (depth=0: search full tree depth)

Returns:
pointer to node if found, NULL otherwise

References OCTOMAP_ERROR_STR.

void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::setBBXMax ( point3d max) [inherited]

sets the maximum for a query bounding box to use

void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::setBBXMin ( point3d min) [inherited]

sets the minimum for a query bounding box to use

template<class NODE , class I >
void octomap::OcTreeBaseImpl< NODE, I >::setResolution ( double  r) [inherited]

Change the resolution of the octree, scaling all voxels.

This will not preserve the (metric) scale!

Referenced by main(), and octomap::OcTreeBaseImpl< NODE, INTERFACE >::OcTreeBaseImpl().

template<class NODE, class INTERFACE>
virtual size_t octomap::OcTreeBaseImpl< NODE, INTERFACE >::size ( ) const [inline, virtual, inherited]
Returns:
The number of nodes in the tree

Referenced by main().

virtual void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::toMaxLikelihood ( ) [virtual, inherited]

Creates the maximum likelihood map by calling toMaxLikelihood on all tree nodes, setting their occupancy to the corresponding occupancy thresholds.

This enables a very efficient compression if you call prune() afterwards.

void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::toMaxLikelihoodRecurs ( OcTreeNodeStamped node,
unsigned int  depth,
unsigned int  max_depth 
) [protected, inherited]
void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::updateInnerOccupancy ( ) [inherited]

Updates the occupancy of all inner nodes to reflect their children's occupancy.

If you performed batch-updates with lazy evaluation enabled, you must call this before any queries to ensure correct multi-resolution behavior.

void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::updateInnerOccupancyRecurs ( OcTreeNodeStamped node,
unsigned int  depth 
) [protected, inherited]
virtual OcTreeNodeStamped * octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::updateNode ( const OcTreeKey key,
bool  occupied,
bool  lazy_eval = false 
) [virtual, inherited]

Integrate occupancy measurement.

Parameters:
keyOcTreeKey of the NODE that is to be updated
occupiedtrue if the node was measured occupied, else false
lazy_evalwhether update of inner nodes is omitted after the update (default: false). This speeds up the insertion, but you need to call updateInnerOccupancy() when done.
Returns:
pointer to the updated NODE
virtual OcTreeNodeStamped * octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::updateNode ( const point3d value,
bool  occupied,
bool  lazy_eval = false 
) [virtual, inherited]

Integrate occupancy measurement.

Looks up the OcTreeKey corresponding to the coordinate and then calls udpateNode() with it.

Parameters:
value3d coordinate of the NODE that is to be updated
occupiedtrue if the node was measured occupied, else false
lazy_evalwhether update of inner nodes is omitted after the update (default: false). This speeds up the insertion, but you need to call updateInnerOccupancy() when done.
Returns:
pointer to the updated NODE
virtual OcTreeNodeStamped * octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::updateNode ( const point3d value,
float  log_odds_update,
bool  lazy_eval = false 
) [virtual, inherited]

Manipulate log_odds value of voxel directly.

Looks up the OcTreeKey corresponding to the coordinate and then calls udpateNode() with it.

Parameters:
value3d coordinate of the NODE that is to be updated
log_odds_updatevalue to be added (+) to log_odds value of node
lazy_evalwhether update of inner nodes is omitted after the update (default: false). This speeds up the insertion, but you need to call updateInnerOccupancy() when done.
Returns:
pointer to the updated NODE
virtual OcTreeNodeStamped * octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::updateNode ( const OcTreeKey key,
float  log_odds_update,
bool  lazy_eval = false 
) [virtual, inherited]

Manipulate log_odds value of voxel directly.

Parameters:
keyOcTreeKey of the NODE that is to be updated
log_odds_updatevalue to be added (+) to log_odds value of node
lazy_evalwhether update of inner nodes is omitted after the update (default: false). This speeds up the insertion, but you need to call updateInnerOccupancy() when done.
Returns:
pointer to the updated NODE
void octomap::OcTreeStamped::updateNodeLogOdds ( OcTreeNodeStamped node,
const float &  update 
) const [virtual]
OcTreeNodeStamped * octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::updateNodeRecurs ( OcTreeNodeStamped node,
bool  node_just_created,
const OcTreeKey key,
unsigned int  depth,
const float &  log_odds_update,
bool  lazy_eval = false 
) [protected, inherited]
void octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::useBBXLimit ( bool  enable) [inline, inherited]

use or ignore BBX limit (default: ignore)

References octomap::OccupancyOcTreeBase< NODE >::use_bbx_limit.

template<class NODE , class I >
double octomap::OcTreeBaseImpl< NODE, I >::volume ( ) [inherited]
std::ostream& octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::writeBinaryData ( std::ostream &  s) const [inherited]

Writes the data of the tree (without header) to the stream, recursively calling writeBinaryNode (starting with root)

std::ostream& octomap::OccupancyOcTreeBase< OcTreeNodeStamped >::writeBinaryNode ( std::ostream &  s,
const OcTreeNodeStamped node 
) const [inherited]

Write node to binary stream (max-likelihood value), recursively continue with all children.

This will discard the log_odds_occupancy value, writing all leaves as either free or occupied.

Parameters:
s
nodeOcTreeNode to write out, will recurse to all children
Returns:
template<class NODE , class I >
std::ostream & octomap::OcTreeBaseImpl< NODE, I >::writeData ( std::ostream &  s) const [inherited]

Write complete state of tree to stream (without file header) unmodified.

Pruning the tree first produces smaller files (lossless compression)


Field Documentation

Set of leaf keys (lowest level) which changed since last resetChangeDetection.

template<class NODE, class INTERFACE>
KeyRay octomap::OcTreeBaseImpl< NODE, INTERFACE >::keyray [protected, inherited]

Reimplemented in octomap::OcTreeBaseSE< NODE >.

template<class NODE, class INTERFACE>
const leaf_bbx_iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::leaf_iterator_bbx_end [protected, inherited]
template<class NODE, class INTERFACE>
double octomap::OcTreeBaseImpl< NODE, INTERFACE >::max_value[3] [protected, inherited]
template<class NODE, class INTERFACE>
double octomap::OcTreeBaseImpl< NODE, INTERFACE >::min_value[3] [protected, inherited]

to ensure static initialization (only once)

template<class NODE, class INTERFACE>
double octomap::OcTreeBaseImpl< NODE, INTERFACE >::resolution_factor [protected, inherited]
template<class NODE, class INTERFACE>
bool octomap::OcTreeBaseImpl< NODE, INTERFACE >::size_changed [protected, inherited]

flag to denote whether the octree extent changed (for lazy min/max eval)

Referenced by octomap::OcTreeBaseImpl< NODE, INTERFACE >::OcTreeBaseImpl().

template<class NODE, class INTERFACE>
std::vector<double> octomap::OcTreeBaseImpl< NODE, INTERFACE >::sizeLookupTable [protected, inherited]

contains the size of a voxel at level i (0: root node). tree_depth+1 levels (incl. 0)

Referenced by octomap::OcTreeBaseImpl< CountingOcTreeNode, AbstractOcTree >::getNodeSize().

template<class NODE, class INTERFACE>
point3d octomap::OcTreeBaseImpl< NODE, INTERFACE >::tree_center [protected, inherited]
template<class NODE, class INTERFACE>
const tree_iterator octomap::OcTreeBaseImpl< NODE, INTERFACE >::tree_iterator_end [protected, inherited]

use bounding box for queries (needs to be set)?


The documentation for this class was generated from the following files: